Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Parasitol ; 109(5): 506-513, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821101

RESUMO

Areas of endemism are the smallest units in biogeography and can be defined as biologically unique areas comprising taxa with common geographic limits to their distributions. High beta diversity within Amazonia is often related to turnover among these areas. For decades, evolutionary biologists have tried to comprehend the mechanisms generating and maintaining the spatial structure and high diversity of free-living Amazonian organisms, particularly birds. However, few studies have tried to analyze these patterns among their parasites. Host and parasite associations involve shared history that may allow us to better understand the fine-scale evolutionary history of the host. Here we compare the coevolutionary patterns among 2 avian host species with distinct patterns of genetic structure in northern Amazonia, Dendrocincla fuliginosa (Aves: Dendrocolaptidae) and Dixiphia pipra (Aves: Pipridae), and their ectoparasitic lice (Insecta: Phthiraptera), Furnaricola sp. ex Dendrocincla fuliginosa, Myrsidea sp. ex Dixiphia pipra, and Tyranniphilopterus sp. ex Dixiphia pipra. We obtained sequences of the mitochondrial gene cytochrome oxidase subunit I from hosts and parasites collected on opposite banks of the Negro and Japurá rivers, which delimit 3 areas of endemism in northern Amazonia: Napo, Jau, and Guiana. Our results demonstrate that the Negro River is a geographical barrier for both Furnaricola sp. and its avian host, Dendrocincla fuliginosa. Phylogenies of both hosts, Dendrocincla fuliginosa, and the parasites, Furnaricola sp., show monophyletic clades on opposite margins of the river that are not sister taxa. These clades have a mean uncorrected p-distance of 17.8% for Furnaricola sp. and 6.0% for Dendrocincla fuliginosa. Thus, these parasite clades constitute distinct evolutionary lineages and may even be distinct species. In contrast, Dixiphia pipra has no population structure associated with either river. Accordingly, data from their lice Myrsidea sp. indicate weak support for different clades on opposite margins of the Negro River, whereas data from their lice Tyranniphilopterus sp. indicate weak structure across the Japurá. This study is a first step toward understanding the effects of biogeographic history on permanent ectoparasites and suggests that host biogeographic history is to some extent a determinant of the parasite's history. Furthermore, the parasite's evolutionary history is an additional source of information about their hosts' evolution in this highly diverse region of northern Amazonia.


Assuntos
Amblíceros , Anoplura , Iscnóceros , Parasitos , Passeriformes , Ftirápteros , Animais , Ftirápteros/genética , Filogenia , Geografia , Interações Hospedeiro-Parasita
2.
Microb Ecol ; 86(4): 2838-2846, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608162

RESUMO

Establishing how environmental gradients and host ecology drive spatial variation in infection rates and diversity of pathogenic organisms is one of the central goals in disease ecology. Here, we identified the predictors of concomitant infection and lineage richness of blood parasites in New Word bird communities. Our multi-level Bayesian models revealed that higher latitudes and elevations played a determinant role in increasing the probability of a bird being co-infected with Leucocytozoon and other haemosporidian parasites. The heterogeneity in both single and co-infection rates was similarly driven by host attributes and temperature, with higher probabilities of infection in heavier migratory host species and at cooler localities. Latitude, elevation, host body mass, migratory behavior, and climate were also predictors of Leucocytozoon lineage richness across the New World avian communities, with decreasing parasite richness at higher elevations, rainy and warmer localities, and in heavier and resident host species. Increased parasite richness was found farther from the equator, confirming a reverse Latitudinal Diversity Gradient pattern for this parasite group. The increased rates of Leucocytozoon co-infection and lineage richness with increased latitude are in opposition with the pervasive assumption that pathogen infection rates and diversity are higher in tropical host communities.


Assuntos
Doenças das Aves , Coinfecção , Haemosporida , Parasitos , Animais , Coinfecção/veterinária , Teorema de Bayes , Altitude , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves , Prevalência
3.
Mol Phylogenet Evol ; 186: 107828, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247702

RESUMO

Amazonia is the primary source of haemosporidian diversity for South American biomes. Yet, our understanding of the contribution of each area of endemism and the biogeographical processes that generated such diversity in this group of vector transmitted parasites remains incomplete. For example, a recently formed fluvial island in the Amazon delta - Marajó Island, is composed of avian lineages from adjacent Amazonian areas of endemism, but also from open habitats, such as Cerrado. This raises the question: Is the parasite assemblage found in avian hosts on this island formed by parasite lineages from adjacent Amazonian areas of endemism or Cerrado? Here, we assessed the spatiotemporal evolution of Plasmodium and Parahaemoproteus parasites. Our biogeographic analysis showed that dispersal dominated Plasmodium diversification, whereas duplication was more frequent for the genus Parahaemoproteus. We show that the Inambari area of endemism was the primary source for Plasmodium diversity on Marajó Island, but that this island received more Parahaemoproteus lineages from Cerrado than any Amazonian area of endemism. The unique patterns of dispersal for each parasite genus coupled with their propensity to shift hosts locally may have facilitated their diversification across Amazonia, suggesting that differences in deep evolutionary history may have constrained their colonization of Marajó Island.


Assuntos
Haemosporida , Parasitos , Plasmodium , Animais , Filogenia , Plasmodium/genética , Haemosporida/genética , Aves
4.
Proc Biol Sci ; 289(1987): 20221283, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36416043

RESUMO

Birds are highly visually oriented and use plumage coloration as an important signalling trait in social communication. Hence, males and females may have different patterns of plumage coloration, a phenomenon known as sexual dichromatism. Because males tend to have more complex plumages, sexual dichromatism is usually attributed to female choice. However, plumage coloration is partly condition-dependent; therefore, other selective pressures affecting individuals' success may also drive the evolution of this trait. Here, we used tanagers as model organisms to study the relationships between dichromatism and plumage coloration complexity in tanagers with parasitism by haemosporidians, investment in reproduction and life-history traits. We screened blood samples from 2849 individual birds belonging to 52 tanager species to detect haemosporidian parasites. We used publicly available data for plumage coloration, bird phylogeny and life-history traits to run phylogenetic generalized least-square models of plumage dichromatism and complexity in male and female tanagers. We found that plumage dichromatism was more pronounced in bird species with a higher prevalence of haemosporidian parasites. Lastly, high plumage coloration complexity in female tanagers was associated with a longer incubation period. Our results indicate an association between haemosporidian parasites and plumage coloration suggesting that parasites impact mechanisms of sexual selection, increasing differences between the sexes, and social (non-sexual) selection, driving females to develop more complex coloration.


Assuntos
Parasitos , Passeriformes , Humanos , Animais , Masculino , Feminino , Filogenia , Pigmentação , Caracteres Sexuais
5.
Parasitology ; : 1-10, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226920

RESUMO

Vector-borne parasites are important ecological drivers influencing life-history evolution in birds by increasing host mortality or susceptibility to new diseases. Therefore, understanding why vulnerability to infection varies within a host clade is a crucial task for conservation biology and for understanding macroecological life-history patterns. Here, we studied the relationship of avian life-history traits and climate on the prevalence of Plasmodium and Parahaemoproteus parasites. We sampled 3569 individual birds belonging to 53 species of the family Thraupidae. Individuals were captured from 2007 to 2018 at 92 locations. We created 2 phylogenetic generalized least-squares models with Plasmodium and Parahaemoproteus prevalence as our response variables, and with the following predictor variables: climate PC1, climate PC2, body size, mixed-species flock participation, incubation period, migration, nest height, foraging height, forest cover, and diet. We found that Parahaemoproteus and Plasmodium prevalence was higher in species inhabiting open habitats. Tanager species with longer incubation periods had higher Parahaemoproteus prevalence as well, and we hypothesize that these longer incubation periods overlap with maximum vector abundances, resulting in a higher probability of infection among adult hosts during their incubation period and among chicks. Lastly, we found that Plasmodium prevalence was higher in species without migratory behaviour, with mixed-species flock participation, and with an omnivorous or animal-derived diet. We discuss the consequences of higher infection prevalence in relation to life-history traits in tanagers.

6.
Mol Phylogenet Evol ; 174: 107556, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35738542

RESUMO

The avian feather louse Philopterus-complex (Phthiraptera: Ischnocera: Philopteridae) currently contains 12 genera that have been grouped together because of shared morphological characteristics. Although previously lumped into a single genus (Philopterus), more recent morphological treatments have separated the group into several different genera. Here we evaluate the status of these genera using DNA sequence data from 118 ingroup specimens belonging to ten genera in the Philopterus-complex: Australophilopterus Mey, 2004, Cinclosomicola Mey 2004, Clayiella Eichler, 1940, Corcorides Mey, 2004, Mayriphilopterus Mey, 2004, Paraphilopterus Mey 2004, Philopteroides Mey 2004, Philopterus Nitzsch, 1818, Tyranniphilopterus Mey, 2004, and Vinceopterus Gustafsson, Lei, Chu, Zou, and Bush, 2019. Our sampling includes 97 new louse-host association records. Our analyses suggest that the genus Debeauxoecus Conci, 1941, parasitic on pittas (Aves: Pittidae), is outside of the Philopterus-complex, and that there is strong support for the monophyly of a group containing the remaining genera from the complex. Some diverse genera, such as Philopterus (sensu stricto) and Mayriphilopterus are supported as monophyletic, whereas the genera Australophilopterus, Philopteroides, and Tyranniphilopterus are not. The present study is the largest phylogenetic reconstruction of avian lice belonging to the Philopterus-complex to date and suggests that further generic revision is needed in the group to integrate molecular and morphological information.


Assuntos
Anoplura , Doenças das Aves , Iscnóceros , Passeriformes , Ftirápteros , Animais , Doenças das Aves/genética , Doenças das Aves/parasitologia , Plumas , Iscnóceros/anatomia & histologia , Iscnóceros/genética , Passeriformes/parasitologia , Ftirápteros/genética , Filogenia
7.
Biol Lett ; 18(4): 20210575, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414225

RESUMO

The factors that influence whether a parasite is likely to cause death in a given host species are not well known. Generalist parasites with high local abundances, broad distributions and the ability to infect a wide phylogenetic diversity of hosts are often considered especially dangerous for host populations, though comparatively little research has been done on the potential for specialist parasites to cause host mortality. Here, using a novel database of avian mortality records, we tested whether phylogenetic host specialist or host generalist haemosporidian blood parasites were associated with avian host deaths based on infection records from over 81 000 examined hosts. In support of the hypothesis that host specialist parasites can be highly virulent in novel hosts, we found that the parasites that were associated with avian host mortality predominantly infected more closely related host species than expected under a null model. Hosts that died tended to be distantly related to the host species that a parasite lineage typically infects, illustrating that specialist parasites can cause death outside of their limited host range. Overall, this study highlights the overlooked potential for host specialist parasites to cause host mortality despite their constrained ecological niches.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Animais , Doenças das Aves/parasitologia , Aves/parasitologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Filogenia
8.
Parasitol Res ; 121(5): 1407-1417, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35106653

RESUMO

Avian haemosporidians from the genera Plasmodium and Haemoproteus are vector transmitted parasites. A growing body of evidence suggests that variation in their prevalence within avian communities is correlated with a variety of avian ecological traits. Here, we examine the relationship between infection probability and diversity of haemosporidian lineages and avian host ecological traits (average body mass, foraging stratum, migratory behavior, and nest type). We used molecular methods to detect haemosporidian parasites in blood samples from 642 individual birds of 149 species surveyed at four localities in the Brazilian Pantanal. Based on cytochrome b sequences, we recovered 28 lineages of Plasmodium and 17 of Haemoproteus from 31 infected avian species. Variation in lineage diversity among bird species was not explained by avian ecological traits. Prevalence was heterogenous across avian hosts. Bird species that forage near the ground were less likely to be infected by Haemoproteus, whereas birds that build open cup nests were more likely infected by Haemoproteus. Furthermore, birds foraging in multiple strata were more likely to be infected by Plasmodium. Two other ecological traits, often related to host resistance (body mass and migratory behavior), did not predict infection probability among birds sampled in the Pantanal. Our results suggest that avian host traits are less important determinants of haemosporidian diversity in Pantanal than in other regions, but reinforces that host attributes, related to vector exposure, are to some extent important in modulating infection probability within an avian host assemblage.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves/parasitologia , Filogenia , Plasmodium/genética , Prevalência , Infecções Protozoárias em Animais/epidemiologia
9.
Mol Phylogenet Evol ; 165: 107297, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34438049

RESUMO

Parasite diversification is influenced by many of the same factors that affect speciation of free-living organisms, such as biogeographic barriers. However, the ecology and evolution of the host lineage also has a major impact on parasite speciation. Here we explore the interplay between biogeography and host-association on the pattern of diversification in a group of ectoparasitic lice (Insecta: Phthiraptera: Penenirmus) that feeds on the feathers of woodpeckers, barbets, and honeyguides (Piciformes) and some songbirds (Passeriformes). We use whole genome sequencing of 41 ingroup and 12 outgroup samples to develop a phylogenomic dataset of DNA sequences from a reference set of 2395 single copy ortholog genes, for a total of nearly four million aligned base positions. The phylogenetic trees resulting from both concatenated and gene-tree/species-tree coalescent analyses were nearly identical and highly supported. These trees recovered the genus Penenirmus as monophyletic and identified several major clades, which tended to be associated with one major host group. However, cophylogenetic analysis revealed that host-switching was a prominent process in the diversification of this group. This host-switching generally occurred within single major biogeographic regions. We did, however, find one case in which it appears that a rare dispersal event by a woodpecker lineage from North America to Africa allowed its associated louse to colonize a woodpecker in Africa, even though the woodpecker lineage from North America never became established there.


Assuntos
Anoplura , Aves Canoras , Animais , Plumas , Interações Hospedeiro-Parasita/genética , Filogenia , Aves Canoras/genética , Aves Canoras/parasitologia
10.
Zootaxa ; 4949(3): zootaxa.4949.3.1, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903329

RESUMO

Megascops is the most species-rich owl genus in the New World, with 21 species currently recognized. Phylogenetic relationships within this genus are notoriously difficult to establish due to the considerable plumage similarity among species and polymorphism within species. Previous studies have suggested that the widespread lowland Amazonian M. watsonii might include more than one species, and that the Atlantic Forest endemic M. atricapilla is closely related to the M. watsonii complex, but these relationships are as yet poorly understood. A recently published phylogeny of Megascops demonstrated that M. watsonii is paraphyletic with respect to M. atricapilla and that genetic divergences among some populations of M. watsonii are equal to or surpass the degree of differentiation between some M. watsonii and M. atricapilla. To shed light on the taxonomic status of these species and populations within them, we conducted a multi-character study based on molecular, morphological, and vocal characters. We sequenced three mitochondrial (cytb, CO1 and ND2) and three nuclear genes (BF5, CHD and MUSK) for 49 specimens, covering most of the geographic ranges of M. watsonii and M. atricapilla, and used these sequences to estimate phylogenies under alternative Bayesian, Maximum Likelihood, and multilocus coalescent species tree approaches. We studied 252 specimens and vocal parameters from 83 recordings belonging to 65 individuals, distributed throughout the ranges of M. watsonii and M. atricapilla. We used Discriminant Function Analysis (DFA) to analyze both morphometric and vocal data, and a pairwise diagnostic test to evaluate the significance of vocal differences between distinct genetic lineages. Phylogenetic analyses consistently recovered six statistically well-supported clades whose relationships are not entirely in agreement with currently recognized species limits in M. watsonii and M. atricapilla. Morphometric analyses did not detect significant differences among clades. High plumage variation among individuals within clades was usually associated with the presence of two or more color morphs. By contrast, vocal analyses detected significant differentiation among some clades but considerable overlap among others, with some lineages (particularly the most widespread one) exhibiting significant regional variation. The combined results allow for a redefinition of species limits in both M. watsonii and M. atricapilla, with the recognition of four additional species, two of which we describe here as new. We estimated most cladogenesis in the Megascops atricapilla-M. watsonii complex as having taken place during the Plio-Pleistocene, with the development of the modern Amazonian and São Francisco drainages and the expansion and retraction of forest biomes during interglacial and glacial periods as likely events accounting for this relatively recent burst of diversification.


Assuntos
Estrigiformes , Animais , Teorema de Bayes , DNA Mitocondrial , Variação Genética , Passeriformes/genética , Filogenia , Filogeografia , Estrigiformes/classificação , Estrigiformes/fisiologia
11.
Int J Parasitol ; 51(9): 719-728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33722680

RESUMO

Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.


Assuntos
Doenças das Aves , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Animais , Doenças das Aves/epidemiologia , Florestas , Haemosporida/genética , Humanos , Malária Aviária/epidemiologia , Filogenia , Plasmodium/genética , Prevalência
12.
Parasitol Res ; 120(2): 605-613, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33415388

RESUMO

Studies contrasting parasite prevalence and host-parasite community structure between pristine and disturbed environments will improve our understanding of how deforestation affects disease transmission and parasite extinction. To determine how infection rates of a common and diverse group of avian blood parasites (Plasmodium and Haemoproteus) respond to changes in avian host composition after mining, we surveyed 25 bird communities from pristine forests (two forest types: plateau and hillside) and reforested sites in Northeast Amazonia. Infection rates and both parasite and avian host community structure exhibited considerable variation across the deforestation gradient. In opposition to the emerging pattern of lower avian haemosporidian prevalence in disturbed tropical forests in Africa, we show that secondary forests had higher haemosporidian prevalence in one of the largest mining areas of Amazonia. The dissimilarity displayed by bird communities may explain, in part, the higher prevalence of Haemoproteus in reforested areas owing to the tolerance of some bird species to open-canopy forest habitat. On the other hand, deforestation may cause local extinction of Plasmodium parasites due to the loss of their avian hosts that depend on closed-canopy primary forest habitats. Our results demonstrate that forest loss induced by anthropogenic changes can affect a host-parasite system and disturb both parasite transmission and diversity.


Assuntos
Apicomplexa/isolamento & purificação , Doenças das Aves/epidemiologia , Interações Hospedeiro-Parasita , Animais , Apicomplexa/genética , Biodiversidade , Doenças das Aves/parasitologia , Doenças das Aves/transmissão , Aves , Brasil/epidemiologia , Código de Barras de DNA Taxonômico/veterinária , Ecossistema , Florestas , Geografia , Haemosporida/genética , Haemosporida/isolamento & purificação , Mineração , Plasmodium/genética , Plasmodium/isolamento & purificação , Prevalência
13.
PLoS One ; 15(10): e0240062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031471

RESUMO

The eukaryotic blood parasite genus Trypanosoma includes several important pathogens of humans and livestock, but has been understudied in wildlife broadly. The trypanosomes that infect birds are in particular need of increased attention, as these parasites are abundant and globally distributed, yet few studies have addressed their evolutionary origins and diversity using modern molecular and analytical approaches. Of specific interest are the deep evolutionary relationships of the avian trypanosomes relative to the trypanosome species that are pathogenic in humans, as well as their species level diversity in regions where they have been understudied such as North America. Here, we address these unresolved areas of study using phylogenomic data for two species of avian trypanosomes that were isolated as "bycatch" from host transcriptome assemblies, as well as a large 18S DNA barcode sequence dataset that includes 143 novel avian Trypanosoma 18S sequences from North America. Using a phylogenomic approach, we find that the avian trypanosomes are nested within a clade of primarily mammalian trypanosomes that includes the human pathogen Trypanosoma cruzi, and are paraphyletic with respect to the ruminant trypanosome Trypanosoma theileri. DNA barcode sequences showed that T. avium and an unidentified small, non-striated trypanosome that was morphologically similar to T. everetti are each represented by highly abundant and divergent 18S haplotypes in North America. Community-level sampling revealed that additional species-level Trypanosoma lineages exist in this region. We compared the newly sequenced DNA barcodes from North America to a global database, and found that avian Trypanosoma 18S haplotypes generally exhibited a marked lack of host specificity with at least one T. avium haplotype having an intercontinental distribution. This highly abundant T. avium haplotype appears to have a remarkably high dispersal ability and cosmopolitan capacity to evade avian host immune defenses, which warrant further study.


Assuntos
Aves/genética , Transcriptoma , Trypanosoma/genética , Animais , Teorema de Bayes , Evolução Biológica , Aves/parasitologia , Mapeamento de Sequências Contíguas , Código de Barras de DNA Taxonômico , DNA de Protozoário/química , DNA de Protozoário/metabolismo , Bases de Dados Factuais , Haplótipos , Humanos , América do Norte , Filogenia , RNA Ribossômico 18S/química , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/metabolismo , Trypanosoma/classificação , Trypanosoma/patogenicidade , Trypanosoma cruzi/classificação
14.
Parasitol Res ; 119(7): 2039-2045, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32377908

RESUMO

Ticks are ectoparasites that feed on blood of a broad taxonomic range of terrestrial and flying vertebrates and are distributed across a wide range of environmental conditions. Here, we explore the biotic and abiotic factors on infestation probability of ticks of the genus Amblyomma and assess the degree of host specificity based on analysis of 1028 birds surveyed across Brazil. We show that tick infestation rates exhibited considerable variation across the 235 avian species analyzed and that the probability of an individual bird being parasitized by immature ticks (larvae and nymphs) increased with annual precipitation. Host phylogeny and two host ecological traits known to promote tick exposure (body mass and foraging behavior) did not predict infestation probability. Moreover, immature ticks displayed a low degree of host specificity at the family level. Lastly, tick occurrence in birds carrying infection with avian malaria and related parasites did not differ from those free of these haemosporidian parasites, indicating a lack of parasite avoidance by immature ticks. Our findings demonstrate that tick occurrence in birds across Brazilian biomes responds to environmental factors rather than ecological and evolutionary host attributes.


Assuntos
Aves/parasitologia , Meio Ambiente , Especificidade de Hospedeiro/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Ixodidae/fisiologia , Infestações por Carrapato/veterinária , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Brasil/epidemiologia , Larva , Malária Aviária/epidemiologia , Ninfa , Filogenia
15.
Proc Biol Sci ; 287(1921): 20193005, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32070251

RESUMO

Tinamous host the highest generic diversity of lice of any group of birds, as well as hosting representatives of all four avian feather louse ecomorphs. Although the generic diversity of tinamou feather lice is well documented, few attempts have been made to reconstruct the phylogenetic relationships among these lice. To test whether tinamou feather lice form a monophyletic group as a whole, we used whole-genome sequencing to estimate a higher-level phylogeny of tinamou feather lice, together with a broad diversity of other avian feather louse groups. In total, we analysed sequences from over 1000 genes for 48 genera of avian lice using both concatenated and coalescent approaches to estimate the phylogeny of this diverse group of avian feather lice. Although the body louse ecomorph of tinamou feather lice formed a monophyletic group, they did not strictly form a monophyletic group together with the other three ecomorphs of tinamou feather lice. In particular, a clade comprised of several feather louse genera, mainly from South America, is nested phylogenetically within tinamou lice, which also have their main centre of diversity in South America. These results suggest in situ radiation of these parasites in South America.


Assuntos
Paleógnatas/parasitologia , Animais , Evolução Biológica , Aves/parasitologia , Plumas/parasitologia , Interações Hospedeiro-Parasita , Ftirápteros , Filogenia , América do Sul
16.
J Anim Ecol ; 89(2): 423-435, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571223

RESUMO

Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector-transmitted parasites. Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity of Leucocytozoon (an avian blood parasite) at site and species levels across the New World. To explore spatial patterns in infection probability and lineage diversity for Leucocytozoon parasites, we surveyed 69 bird communities from Alaska to Patagonia. Using phylogenetic Bayesian hierarchical models and high-resolution satellite remote-sensing data, we determined the relative influence of climate, landscape, geography and host phylogeny on regional parasite community assembly. Infection rates and parasite diversity exhibited considerable variation across regions in the Americas. In opposition to the latitudinal gradient hypothesis, both the diversity and prevalence of Leucocytozoon parasites decreased towards the equator. Host relatedness and traits known to promote vector exposure neither predicted infection probability nor parasite diversity. Instead, the probability of a bird being infected with Leucocytozoon increased with increasing vegetation cover (NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages decreased with increasing NDVI. Infection rates and parasite diversity also tended to be higher in cooler regions and higher latitudes. Whereas temperature partially constrains Leucocytozoon diversity and infection rates, landscape features, such as vegetation cover and water body availability, play a significant role in modulating the probability of a bird being infected. This suggests that, for Leucocytozoon, the barriers to host shifting and parasite host range expansion are jointly determined by environmental filtering and landscape, but not by host phylogeny. Our results show that integrating host traits, host ancestry, bioclimatic data and microhabitat characteristics that are important for vector reproduction are imperative to understand and predict infection prevalence and diversity of vector-transmitted parasites. Unlike other vector-transmitted diseases, our results show that Leucocytozoon diversity and prevalence will likely decrease with warming temperatures.


Assuntos
Doenças das Aves/epidemiologia , Haemosporida/genética , Infecções , Parasitos , Alaska , Animais , Teorema de Bayes , Aves , Filogenia , Probabilidade
17.
Commun Biol ; 2: 445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815200

RESUMO

Nearly all lineages of birds host parasitic feather lice. Based on recent phylogenomic studies, the three major lineages of modern birds diverged from each other before the Cretaceous-Paleogene (K-Pg) mass extinction event. In contrast, studies of the phylogeny of feather lice on birds, indicate that these parasites diversified largely after this event. However, these studies were unable to reconstruct the ancestral avian host lineage for feather lice. Here we use genome sequences of a broad diversity of lice to reconstruct a phylogeny based on 1,075 genes. By comparing this louse evolutionary tree to the avian host tree, we show that feather lice began diversifying on the common ancestor of waterfowl and landfowl, then radiated onto other avian lineages by extensive host-switching. Dating analyses and cophylogenetic comparisons revealed that two of three lineages of birds that diverged before the K-Pg boundary acquired their feather lice after this event via host-switching.


Assuntos
Aves/parasitologia , Extinção Biológica , Interações Hospedeiro-Parasita , Infestações por Piolhos , Ftirápteros , Animais , Aves/classificação , Aves/genética , Genoma , Genômica/métodos , Ftirápteros/classificação , Ftirápteros/genética , Filogenia
18.
J Parasitol ; 105(3): 446-453, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31237482

RESUMO

Birds harbor a diverse group of haemosporidian parasites that reproduce and develop in the host blood cells, muscle tissue, and various organs, which can cause negative effects on the survival and reproduction of their avian hosts. Characterization of the diversity, distribution, host specificity, prevalence patterns, and phylogenetic relationships of these parasites is critical to the study of avian host-parasite ecology and evolution and for understanding and preventing epidemics in wild bird populations. Here, we tested whether muscle and liver samples collected as part of standard ornithological museum expeditions can be examined to study the diversity and distributions of haemosporidians in the same way as blood collected from individual birds that are typically banded and released. We used a standard molecular diagnostic screening method for mitochondrial DNA (cytochrome b) of the parasites and found that blood, muscle, and liver collected from the same host individual provide similar estimates of prevalence and diversity of haemosporidians from the genera Parahaemoproteus and Leucocytozoon. Although we found higher prevalence for the genus Plasmodium when we screened blood vs. liver and muscle samples, the estimates of the diversity of Plasmodium from different tissue types are not affected at the community level. Given these results, we conclude that for several reasons existing museum genetic resources collections are valuable data sources for the study of haemosporidians. First, ornithological museum collections around the world house tens of thousands of vouchered tissue samples collected from remote regions of the world. Second, the host specimens are vouchered and thus host identification and phenotype are permanently documented in databased archives with a diversity of associated ancillary data. Thus, not only can identifications be confirmed but also a diversity of morphological measurements and data can be measured and accessed for these host specimens in perpetuity.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Animais , Biodiversidade , Aves , Sangue/parasitologia , Haemosporida/classificação , Fígado/parasitologia , Músculos/parasitologia , Museus
19.
Parasitology ; 146(8): 1083-1095, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31046855

RESUMO

Unlike most bird species, individual kingfisher species (Aves: Alcedinidae) are typically parasitized by only a single genus of louse (Alcedoffula, Alcedoecus, or Emersoniella). These louse genera are typically specific to a particular kingfisher subfamily. Specifically, Alcedoecus and Emersoniella parasitize Halcyoninae, whereas Alcedoffula parasitizes Alcedininae and Cerylinae. Although Emersoniella is geographically restricted to the Indo-Pacific region, Alcedoecus and Alcedoffula are geographically widespread. We used DNA sequences from two genes, the mitochondrial COI and nuclear EF-1α genes, to infer phylogenies for the two geographically widespread genera of kingfisher lice, Alcedoffula and Alcedoecus. These phylogenies included 47 kingfisher lice sampled from 11 of the 19 currently recognized genera of kingfishers. We compared louse phylogenies to host phylogenies to reconstruct their cophylogenetic history. Two distinct clades occur within Alcedoffula, one that infests Alcedininae and a second that infests Cerylinae. All species of Alcedoecus were found only on host species of the subfamily Halcyoninae. Cophylogenetic analysis indicated that Alcedoecus, as well as the clade of Alcedoffula occurring on Alcedininae, do not show evidence of cospeciation. In contrast, the clade of Alcedoffula occurring on Cerylinae showed strong evidence of cospeciation.


Assuntos
Coevolução Biológica , Aves/parasitologia , Especiação Genética , Interações Hospedeiro-Parasita , Ftirápteros/fisiologia , Animais , Ftirápteros/classificação , Ftirápteros/genética
20.
Mol Ecol ; 28(10): 2681-2693, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959568

RESUMO

Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance-decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host-parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.


Assuntos
Aves/parasitologia , Ecologia , Interações Hospedeiro-Parasita , Malária Aviária/parasitologia , Animais , Haemosporida/genética , Haemosporida/patogenicidade , Especificidade de Hospedeiro , Filogenia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...